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Novel zirconia-based fluorescent terbium nanoparticles have been prepared as a fluorescent nanoprobe
for time-resolved fluorescence bioassay. The nanoparticles were prepared in a water-in-oil (W/O) mi-
croemulsion consisting of a strongly fluorescent Tb3+ complex, N,N,N1, N1-[2,6-bis(3′-aminomethyl-
1′-pyrazolyl)-phenylpyridine]tetrakis(acetate)-Tb3+(BPTA-Tb3+), Triton X-100, hexanol, and cyclo-
hexane by controlling co-condensation of Zr(OCH2CH3)4 and ZrOCl2. The characterizations by
transmission electron microscopy and fluorometric methods indicate that the nanoparticles are uni-
form in size, 33 ± 4 nm in diameter, and have a fluorescence quantum yield of 8.9% and a long
fluorescence lifetime of 2.0 ms. The zirconia-based fluorescent terbium nanoparticles show high sta-
bility against basic dissolution in a high pH aqueous buffer compared to the silica-based nanoparticles.
A surface modification and bioconjugation method for the fluorescent nanoparticles was developed,
and the nanoparticle-conjugated streptavidin (SA) was used for time-resolved floroimmunoassy (TR-
FIA) of human prostate specific antigen (PSA). The result shows that the zirconia-based fluorescent
terbium nanoparticles are useful as a fluorescent nanoprobe for time-resolved fluorescence bioassay.

KEY WORDS: Terbium complex; fluorescent nanoparticle; fluorescence probe; time-resolved fluoro-
immunoassay.

INTRODUCTION

Researches on the preparation, characterization and
application of functionalized nanosized materials have
increased tremendously during the last decade. Among
these researches, fluorescent nanoparticles, offering effec-
tive signal amplification and high photostability compared
to the conventional fluorescence dyes, have provided an
attractive research field for biolabeling and biological de-
tection. The representative fluorescent nanomaterials in-
cluding quantum dots [1–4], plasmon-resonant nanopar-
ticles [5], and luminophore-doped silica nanoparticles
[7–9], have been explored as the luminescent nanoprobes
for various bioassays. However, the luminescence mea-
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surements using these luminescent nanoprobes are eas-
ily affected by the strong non-specific background noises
caused by the autofluorescence from biological samples,
the scattering light associated with Tyndall, Rayleigh and
Raman scatterings, and the luminescence from the opti-
cal components such as the cuvettes, filters and lenses.
To resolve these problems, we recently developed sev-
eral kinds of fluorescent lanthanide complex-doped silica
nanoparticles as the fluorescent nanoprobes for biolabel-
ings and time-resolved fluorescence bioassays [10–13].
These nanoparticles combined the advantages of both
luminophore-doped silica nanoparticles and lanthanide
fluorescence latexes including high hydrophilicity, pho-
tostability and biocompatibility have been expected to be
more useful as fluorescence nanoprobes, since the fluo-
rescence of the nanoparticles is long-lived, and the non-
specific background noises can be easily eliminated by
using time-resolved fluorescence measurement technique.
However, the use of a silica-based fluorescent nanoprobe
for bioassay has a problem that the silica network of
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the nanoparticles might be dissolved in a basic aqueous
medium [14].

Zirconia is an important ceramic material and has
been applied as a functional material in a number of tech-
nologies, such as high performance liquid chromatogra-
phy [15–18], catalyst [19], oxygen sensor [20], damage
resistant optical coating [21], buffer layer for supercon-
ductor growth [22], and gate dielectric [23]. Compared
with silica material, zirconia material has better resis-
tance against dissolution in high pH buffers and stronger
ability to tolerate organic solvents, high temperatures and
pressures [16]. Several methods have been investigated
for the preparation of zirconia nanoparticles including
sol–gel process [24], spray pyrolysis [25], salt-assisted
aerosol decomposition [26], and emulsion precipitation
[27]. However, the nanoparticles prepared by these meth-
ods showed the broad particle size distributions, and
a successful preparation method of uniform-sized and
luminophore-doped zirconia nanoparticles has not been
reported.

In the present work, novel fluorescent terbium
complex-doped zirconia nanoparticles with uniform
size and strong fluorescence were prepared using a
water-in-oil microemulsion technique by controlling
the co-condensation of ZrOCl2 and Zr(OCH2CH3)4.
A strongly fluorescent Tb3+ complex, N,N,N1,N1-[2,6-
bis(3′-aminomethyl-1′-pyrazolyl)-4-phenylpyridine] tetr-
akis(acetate)-Tb3+ (BPTA-Tb3+), was doped inside zirco-
nia network of the nanoparticles. The zirconia matrix of
the nanoparticles not only shows high stability in a strong
basic solution, its surface can directly attach biomolecules
due to the presence of the unsaturated coordinative zir-
conium(IV) sites. After the nanoparticles were coated
with bovine serum albumin (BSA) by physical absorp-
tion, the BSA-coated nanoparticles were covalently bound
to streptavidin (SA). The result of time-resolved fluoroim-
munoassay (TR-FIA) for human prostate specific antigen
(PSA) using the nanoparticle-conjugated SA reveals that
the fluorescent terbium complex-doped zirconia nanopar-
ticles are a useful fluorescent nanoprobe for time-resolved
fluorescence bioassay.

EXPERIMENTAL

Materials and Physical Measurements

The BPTA-Tb3+ complex was synthesized by us-
ing a previous method [28]. ZrOCl2, Zr(OCH2CH3)4

and Triton X-100 were purchased from Acros Organ-
ics. SA was purchased from Chemicon International
Inc. Mouse monoclonal and goat polyclonal anti-human
PSA antibodies were purchased from OEM Concepts Co.

Sulfosuccinimidyl-6-(biotin-amido)hexanoate (NHS-LC-
biotin) was purchased from Pierce Chemical Co. The stan-
dard solutions of human PSA were prepared by diluting
human PSA antigen (Biogenesis Ltd.) with 0.05 M Tris–
HCl buffer of pH 7.8 containing 5% BSA, 0.9% NaCl and
0.1% NaN3.

A JEOL model JEM-2000EX transmission electron
microscope was used for measuring the shape and size
of the nanoparticles. X-ray diffraction (XRD) spectrum
was measured on a Rigaku diffractometer (D/Max-γ B,
Japan). The X-ray diffraction pattern was recorded from
5 to 60◦ (2θ value) using CuKα radiation, and a gen-
erator voltage of 40 kV and a current of 70 mA. Ther-
mogravimetry (TG) and differential scanning calorime-
ter (DSC) analyses were carried out on a Mettler Toledo
TGA/SDTA851–thermoanalyzer (Swiss, N2 atmosphere,
50 ml/min, heating rate 10 K/min) and a TA Instruments
model 910S differential scanning calorimeter (USA, N2

atmosphere, 200 ml/min, heating rate 10 K/min), respec-
tively. Fluorescence spectra and emission lifetime were
measured on a Perkin Elmer LS 50B spectrofluorometer.
The TR-FIA was carried out with FluoroNunc 96-well
microtiter plate as the solid-phase carrier and measured
on a Perkin–Elmer Victor 1420 multilabel counter with
the conditions of excitation wavelength, 320 nm, emis-
sion wavelength, 545 nm, delay time, 0.2 ms, and window
time, 0.4 ms.

Preparation of Nanoparticles

A W/O microemulsion consisting of 2.38 g Triton
X-100, 1.88 g hexanol, 7.25 g cyclohexane, 0.4 ml ethanol
solution of 0.01 mg Zr(OC2H5)4, 1.5 ml aqueous solution
of 10 mg BPTA-Tb3+ and 0.03 mg ZrOCl2 was mixed
with a W/O microemulsion consisting of 0.17 g Triton
X-100, 0.13 g hexanol, 0.52 g cyclohexane and 14 µl con-
centrated ammonia water with vigorous stirring. After
stirring for 48 h, the precipitate was obtained by adding
acetone, centrifuging, and washing with ethanol and wa-
ter for several times to remove surfactant and unreacted
materials. The pale yellow Tb3+ complex-doped fluores-
cent zirconia nanoparticles were obtained by drying the
precipitate in desiccator for 1 day and in electrothermal
stove at 250◦C for 1 h.

Preparation of the Nanoparticle-Conjugated SA

After the nanoparticles (2.0 mg) and BSA (10 mg)
suspended in 1.0 ml of 0.1 M phosphate buffer of pH 7.0
were stirred for 24 h at room temperature, the BSA-coated
nanoparticles were centrifuged and washed with phos-
phate buffer and water. The BSA-coated nanoparticles
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were suspended in 1.0 ml of 0.1 M phosphate buffer of
pH 7.0 again, and then 1.0 mg of SA and 0.1 ml of 1%
glutaraldehyde were added. After the suspension was
stirred at 4◦C for 24 h, 2 mg of NaBH4 was added.
The suspension was further incubated at room temper-
ature for 2 h. The nanoparticle-conjugated SA was cen-
trifuged, washed with phosphate buffer and water, and
diluted with 0.05 M Tris–HCl buffer of pH 7.8 containing
0.2% BSA, 0.1% NaN3 and 0.9% NaCl, and than stored
at 4◦C.

Preparation of Biotinylated Goat
Anti-Human PSA Antibody

After two dialyses of 1.0 ml goat anti-human PSA
antibody solution (0.5 mg/ml) for 24 h at 4◦C against 3 L
of saline water, 8.4 mg NaHCO3 and 3 mg NHS-LC-biotin
were added. After stirring for 1 h at room temperature, the
solution was further incubated for 24 h at 4◦C. The solu-
tion was twice dialyzed each for 24 h at 4◦C against 3 L of
0.1 M NaHCO3 containing 0.25 g NaN3, then 5 mg BSA
and 5 mg NaN3 were added. The solution was stored at
−20◦C before use. When the biotinylated antibody solu-
tion was used for immunoassay, it was diluted 300-fold
with 0.05 M Tris–HCl buffer of pH 7.8 containing 0.2%
BSA, 0.9% NaCl and 0.1% NaN3.

Immunoassay of Human PSA Using
the Nanoparticle-Conjugated SA

After anti-human PSA monoclonal antibody (diluted
to 10 µg/ml with 0.1 M carbonate buffer of pH 9.6) was
coated on the wells (50 µl per well) of a 96-well mi-
crotiter plate by physical adsorption [29], 45 µl of human
PSA standard solution was added to each well. The plate
was incubated at 37◦C for 1 h, and washed with 0.05 M
Tris–HCl buffer of pH 7.8 containing 0.05% Tween 20
and 0.05 M Tris–HCl buffer of pH 7.8. Then the biotiny-
lated antibody (∼1.1 µg/ml, 45 µl per well) was added to
each well, and the plate was incubated at 37◦C for 1 h. Af-
ter washing, the nanoparticle-conjugated SA (∼20 µg/ml,
45 µl per well) was added to each well, and the plate
was incubated at 37◦C for 1 h. The plate was washed
four times with 0.05 M Tris–HCl buffer of pH 7.8 con-
taining 0.05% Tween 20, and subjected to solid-phase
time-resolved fluorometric measurement.

RESULTS AND DISCUSSION

The preparations of various nanoparticles were gen-
erally performed in heterogeneous media, such as emul-
sion and microemulsion, using the interior dispersed

aqueous phase as isolated nanoreactors to obtain non-
agglomerated nanoparticles [30]. In the present work, the
fluorescent terbium complex-doped zirconia nanoparti-
cles were prepared in a W/O microemulsion containing
aqueous solution of BPTA-Tb3+, surfactant Triton X-100,
cosurfactant hexanol, and oil-phase cyclohexane by hy-
drolysis co-condensation of ZrOCl2 and Zr(OCH2CH3)4.
The drying process of the nanoparticles at 250◦C enables
the adhesive water molecules in the nanoparticles to be ef-
fectively removed. The transmission electron microscopy
(TEM) image and particle size histogram of the nanopar-
ticles (Fig. 1) indicate that the zirconia nanoparticles pre-
pared by this method are monodisperse, spherical and
uniform in size, 33 ± 4 nm in diameter.

Thermogravimetry (TG) and differential scanning
calorimeter (DSC) analyses were used for evaluating the
thermal stability of BPTA-Tb3+ complex (Fig. 2). The
mass loss between ∼50–200◦C with a broad endother-
mic peak is caused by the release of crystal water in
the complex, and the exothermic peak at ∼360◦C is
caused by the decomposition of BPTA-Tb3+ complex.
This result shows that the BPTA-Tb3+ complex is stable
below 300◦C, and the drying process of the nanoparti-
cles in electrothermal stove at 250◦C does not decom-
pose the fluorescent Tb3+ complex. The X-ray diffrac-
tion (XRD) spectrum of the nanoparticles is shown in
Fig. 3. The zirconia-based fluorescent nanoparticles do
not show any sharp diffraction peaks, which indicates the
nanoparticles are an amourphous or ultrasmall crystalline
material [11].

The time-resolved fluorescence spectra of the
nanoparticles and pure BPTA-Tb3+ complex measured
in 0.1 M phosphate buffer of pH 7.1 were shown in
Fig. 4. Both BPTA-Tb3+ complex and the nanoparti-
cles show the same spectrum patterns with the exci-
tation and emission maximum wavelengths at 324 and
543 nm, respectively. The fluorescence quantum yield
of the nanoparticles in 0.05 M borate buffer of pH 9.1
was measured to be 8.9% (the experimental uncertainty
<15%) by using a reported method [31] and calculated
using the equation of φ1 = I1A2φ2/I2A1 with a standard
quantum yield [32] of φ2 = 10.0% for a Tb3+ chelate
of N,N,N1,N1-[4′-phenyl-2,2′:6′,2′′-terpyridine-6,6′′-diyl]
bis(methylenenitrilo)tetrakis(acetate). In the equation, I1

and I2 are the fluorescence intensities of the nanopar-
ticles and the standard, and A1 and A2 are the optical
densities of the nanoparticles and the standard, respec-
tively. The fluorescence lifetime of the nanoparticles was
measured to be 2.0 ms. These results indicate that the
fluorescent terbium chelate-doped zirconia nanoparticles
prepared in this work have good fluorescence properties
for time-resolved fluorometric application.
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Fig. 1. TEM image (at ×250,000 magnification) and size histogram of the Tb3+ complex-doped
zirconia nanoparticles.

To evaluate the stability of zirconia matrix in a
high pH aqueous medium, the BPTA-Tb3+-doped zirco-
nia nanoparticles and silica nanoparticles (prepared using
a previous method [10]) were added to 1.0 M Na2CO3

solution with stirring, respectively. Each for 1 h, a portion
of 1.0 ml solution was centrifuged. The precipitate was
washed twice with water, redispersed in 1.0 ml of water,
and then the fluorescent intensity was measured. The ex-
periment was carried out for a period of 18 h. As shown in
Fig. 5, after 18 h, the fluorescence intensity of the zirconia-
based nanoparticles decreased only less than 3%, whereas
that of the silica-based nanoparticles was decreased ap-

proximately by 60%. The fluorescence intensity decrease
of the BPTA-Tb3+-doped silica nanoparticles is caused by
the dissolution of silica in 1.0 M Na2CO3 solution, which
releases the fluorescent Tb3+ complex molecules in sil-
ica nanoparticles into the Na2CO3 solution. These results
indicate that zirconia matrix is highly stable in high pH
aqueous solution and zirconia-based fluorescent nanopar-
ticles can be used in a broader pH range compared to
silica-based nanoparticles.

Zirconia-based nanoparticles can be conjugated
with proteins easily due to the presence of unsaturated
zirconium coordinative sites on their surface [33–35].

Fig. 2. Curves of TG and DSC analyses of the BPTA-Tb3+ complex.
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Fig. 3. XRD spectrum of the Tb3+ complex-doped zirconia
nanoparticles.

These sites account for the strong and hard Lewis
acidity [36,37], and have a great affinity with hard Lewis
bases, such as carboxylate and amino groups in protein
molecules. Therefore zirconia-based nanoparticles can
form stable complexes with protein molecules by the
formation of Lewis acid-base pairs on the nanoparticle’s
surface. Based on this property, a method for the surface
modification and bioconjugation of the BPTA-Tb3+-
doped zirconia nanoparticles was developed. As shown
in Fig. 6, after nanoparticle’s surface was coated with
BSA by Lewis acid–base reaction, the BSA-coated

Fig. 4. Time-resolved fluorescence excitation and emission spectra of
pure BPTA-Tb3+ complex (0.33 µM, a, b) and the Tb3+ complex-doped
zirconia nanoparticles (3.3 mg/L, c, d) in 0.1 M phosphate buffer of pH
7.1. The conditions of delay time, 0.2 ms, gate time, 0.4 ms, cycle time,
20 ms, excitation slit, 10 nm, and emission slit, 5 nm, were used for the
measurements. Excitation spectra were recorded with λem = 543 nm
and emission spectra with λex = 324 nm.

Fig. 5. Stability experiments: (a) the BPTA-Tb3+ complex-doped zirco-
nia nanoparticles; (b), the BPTA-Tb3+ complex-doped silica nanoparti-
cles, in 1.0 M Na2CO3 solution.

nanoparticles were further conjugated to SA by coupling
the amino groups of BSA and SA with glutaraldehyde
[38]. The role of NaBH4 used in the labeling process is to
reduce the N==C double bond (Shiff base) formed by the
condensation reaction of the amino groups of BSA and SA
with glutaraldehyde to a more stable N----C single bond.
The BSA ‘bridge’ between the nanoparticle and SA has
the function to reduce the effect of the nanoparticles on the
bioactivity of SA.

The TR-FIA of human PSA was used to evaluate
the usefulness of the zirconia nanoparticles as a fluo-
rescent probe for time-resolved fluorescence bioassay.
Figure 7 shows the calibration curve for PSA detection.
The detection limit, defined as the concentration corre-
sponding to 3SD (standard deviation) of background sig-
nal, is 0.4 ng/ml. The dynamic range is up to ∼10 ng/ml.
Compared with the TR-FIA of human PSA using the
BPTA-Tb3± complex-doped silica nanoparticles [10], the
detection limit of the present method is obviously high.
This would be caused by the preparation method of the
nanoparticle-conjugated SA. Even though the Lewis acid–
base conjugation of zirconia nanoparticle-BSA is rela-
tively stable, it would be possible that the conjugation dis-
sociates at lower concentration or in the washing processes
of the assay, which causes some fluorescent nanoparticles
to be lost, and results in the decrease of the detection sen-
sitivity. However, the present primary results still indicate
that the fluorescent zirconia nanoparticles are useful as a
fluorescent nanoprobe for biolabeling and time-resolved
fluorescence bioassay.
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Fig. 6. Immobilization processes of SA onto the Tb3+ complex-doped zirconia nanoparticles.

CONCLUSIONS

Uniform terbium complex-doped fluorescent zirco-
nia nanoparticles having small size, relatively strong flu-
orescence and long fluorescence lifetime were prepared,
characterized and developed as a fluorescent nanoprobe
for biolabling and time-resolved fluorescence bioassay.
The nanoparticles are highly stable in high pH me-
dia compared to the silica-based nanoparticles, which
makes the zirconia-based fluorescent nanoparticles suit-
able be used for the assay that higher pH buffers have
to be used. The applications of the nanoaprticles for
bioconjugation and TR-FIA show that the nanoparti-
cles are a useful fluorescent nanoprobe even though fur-
ther improvement is necessary. It can be expected that
the new fluorescent nanoparticles would be widely use-
ful in time-resolved fluorescence biotechnologies, such
as immunoassay, bioimaging microscopy and biochip
technologies .

Fig. 7. Calibration curve of TR-FIA useing the Tb3+ complex-doped
zirconia nanoparticle-conjugated SA for human PSA.
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